

Welcome to this presentation.

It explains how the investment cost for an Oil & Gas facility is estimated.

After a short introduction, the 3 common methods of cost estimate are shown.

Common ratios, such as \$/kg for equipment, pipe etc. are given.

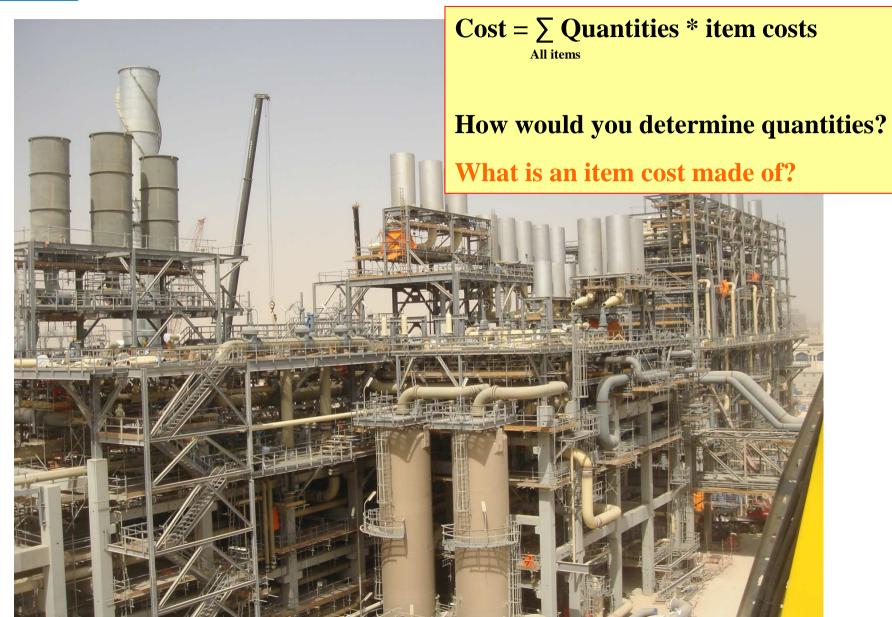
Comments are most welcome (herve.baron@gmail.com), which I will incorporate for the benefit of all.

Agenda

Introduction

The different estimation methods:

- Capacity factored
- Equipment factored
- Analytical



Quantities estimates:

- Ratio from past projects
- •Material Take-Off

PT NO	COMPONENT DESCRIPTION	DI AM.	LOENT CODE	STOCK CODE	OTY
	PIPE				
1	PIPE, ASME B36.10, , ASME SALOS GR. B. BE, SEAMLESS, IN 10 X S-120	10	C1 GABM1	PP2C1 FHML P0000	1956 MM
2	PIPE, ASME B36.10, . ASME SA106 GR. B, BE, SEAMLESS, IN B X S-120	8	CGDBE9	PP2C1 FHML P0000	MM BEEP
	FITTINGS				
3	EQUAL TEE, ASME B16-9, ASME SA234 GR. WPB, BW, SEAMLESS, IN 10 X S-120	1 DX1 D	C1 SN23H	DTE2CORAMI10000	1
4	REDUCING TEE, ASME B16-9, ASME SA234 GR. WPB, BW, SEAMLESS, IN 10 X S-120 / IN 8 X S-120	1 DX8	C1 SNPEB	DTR2CORAMI10000	2
5	CAP, ASME B16-9, ASME SA234 GR. WPB, BW, SEAMLESS, IN 10 X S-120	10	C1 UCOJA	DCP2CDRAMI I 0000	1
6	90 DEG ELBOW LR, ASME B16-9, ASME SA234 GR. WPB, BW, SEAMLESS, IN B X S-120	8	C86AVI	DE 92CORAMI 1 0000	4

 $\underline{Item\ cost} = Supply\ cost + installation\ cost$

How would you each one?

Item cost estimates:

Supply + installation

- •In-house data from past projects
- •Inquiries

Item cost estimates:

Supply + installation

- •In-house data from past projects
- •Inquiries

Sensitivity to:

Raw materials

Item cost estimates:

Supply + installation

- •In-house data from past projects
- •Inquiries

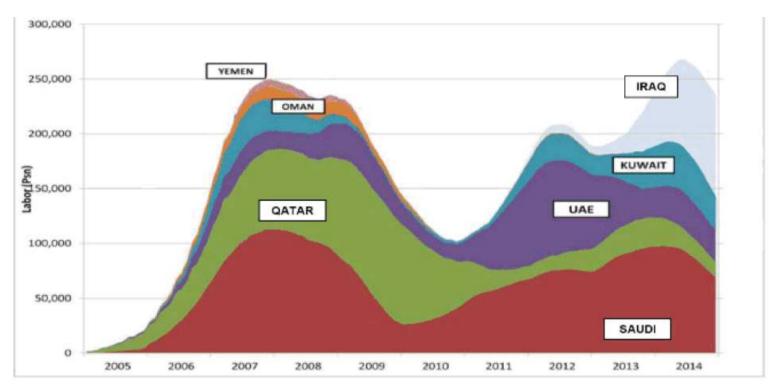
Sensitivity to:

Raw materials

•Steel, alloy steel, copper, cement, iron

Item cost estimates:

Supply + installation


- •In-house data from past projects
- •Inquiries

Sensitivity to:

Raw materials

Construction market

Sensitivity to:

Raw materials

Construction market

Purpose of estimate:

- Concept screening
- Study of feasibility
- Decision to invest

Estimate type:

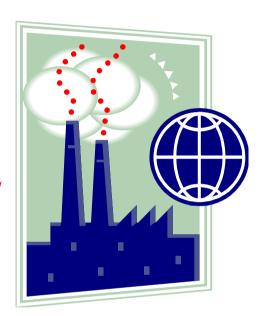
- Capacity factored
- Equipment factored
- Analytical

Purpose of estimate:

- Concept screening
- Study of feasibility
- Decision to invest

Estimate type:

- Capacity factored
- Equipment factored
- Analytical



Capacity factored

$$C1/C2 = (P1/P2)^{e}$$

e ~ 0.6

Ci: Cost of facility with production

capacity Pi

Capacity factored

$$C1/C2 = (P1/P2)^{e}$$

e ~ 0.6

Ci: Cost of facility with production

capacity Pi

Exercise: what is the increase in cost for +50% capacity increase?

Capacity factored

$$C1/C2 = (P1/P2)^{e}$$

e ~ 0.6

Ci: Cost of facility with production

capacity Pi

Exercise: what is the increase in cost for +50% capacity increase? In your opinion, what is the limit of such estimate?

Capacity factored

$$C1/C2 = (P1/P2)^{e}$$

e ~ 0.6

Ci: Cost of facility with production

capacity Pi

Exercise: what is the increase in cost for +50% capacity increase? In your opinion, what is the limit of such estimate? It takes into account neither *market conditions* nor *plant location* (labour cost)

• Equipment factored

C = f M

C: total installed cost of facility

M: cost of main equipment

f: factor

• Equipment factored

$$C = f M$$

C: total installed cost of facility

M: cost of main equipment

f: factor

Item	Cost
Main equipment	100
Secondary equipment & materials	73
Erection Main equipment	7
Construction Piping, E&I	90
Construction: Civil, steel structure, painting, insulation	69
Services (Engineering, Project Management)	104
TOTAL	443

Note: Typical figures for Petrochemical Plant

• Equipment factored

C = f M

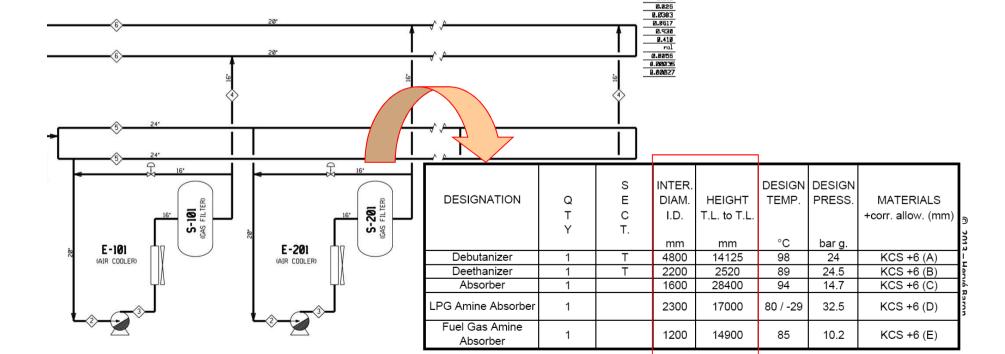
C: total installed cost of facility

M: cost of main equipment

f: factor

Item	Cost
Main equipment	100
Secondary equipment & materials	73
Erection Main equipment	7
Construction Piping, E&I	90
Construction: Civil, steel structure, painting, insulation	69
Services (Engineering, Project Management)	104
TOTAL	443

How is the cost of main equipment evaluated?



Process design

PFDs

H&M balance

STREAM NUMBER	1	2	3	4	6	6	7	8
PRESSURE (MPa-aba)	8.78	6.52	25.1	25.06	8.52	25.06	24.95	24.95
TEMPERATURE (°C)	27.25	26.4	130	50.9	26.4	50.9	49.6	49.B
TOTAL FLOWRATE (Kg/h)	1388816	345204	345204	3452Ø4	690406	6984Ø8	1388816	698486
PHASE	gae	gae	gae	gae	gae	gza	gee	gza
FLOWRATE (SMFN) CNOTE 43	2007000	501750	501750	501750	1003500	1883588	2007000	1883588
ACTUAL FLOWRATE (m)/N	Z8457	5262	2016	2816	19525	4893	8210	4105
VELDCITY (m/pl	5.4	9.4	7.9	5.7	12.7	7.3	19.2	51
VISCOSITY (LP)	8.2136	Ø.Ø134	9.9201	0.0218	8.0134	Ø.Ø218	2.0216	0.0218
DENSITY (Kg/m²)	87.5	65.6	122.6	168.7	65.B	168.7	180.2	168.2
HOLECLLAR WEIGHT	16.52	16.52	16.52	16.52	16.52	16.52	16.52	16.52
COMPOSITION (% mol.)								
HETHANE (C))	97.49378	97.49378	97.49378	97.49378	97.49378	97.4937B	97.49378	97.49378

• Equipment factored

$$C = f M$$

f: factor

f depends on

- type of facility (petrochemical, refining, LNG, off-shore)
- Size

• Equipment factored

$$C = f M$$

f: factor

f depends on

- type of facility (petrochemical, refining, LNG, off-shore)
- Size

	cost				
Item	large facility	small facility			
Main equipment	100	100			
Main equipment erection	10	15			
Piping	100	120			
Electrical	15	25			
Instrumentation	75	120			
Civil	20	25			
Steel structure	20	25			
Painting, insulation	10	20			
Engineering	70	150			
Construction facilities	20	20			
TOTAL	440	620			

Typical figures for a chemical plant

• Equipment factored

$$C = \sum fi Mi$$

Mi Cost of all type i Main equipment

fi: factor

Equipment factored

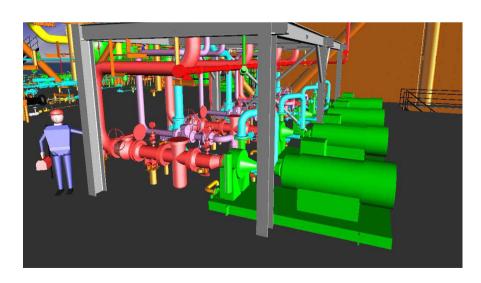
$$C = \sum fi Mi$$

Mi Cost of all type i Main equipment

fi: factor

Why do you think justifies such an approach?

• Equipment factored


 $C = \sum fi Mi$

Mi Cost of all type i Main equipment

fi: factor

Why do you think justifies such an approach?

• Equipment factored

$$C = \sum fi Mi$$

Mi Cost of all type I Main equipment

fi: factor

	cost				
Item	column	pumps			
Main equipment	100	100			
Main equipment erection	20	15			
Piping	110	260			
Electrical	20	110			
Instrumentation	100	70			
Civil	20	35			
Steel structure	20	35			
Painting, insulation	10	10			
TOTAL	400	635			

Analytical

- Main equipment supply + install
- Piping supply + install
- Electrical supply + install
- Instrumentation & Control system supply + install
- Civil Works
- Steel structures
- Painting, Insulation
- Temporary construction facilities
- Engineering & Project Management
- Miscellaneous

Analytical

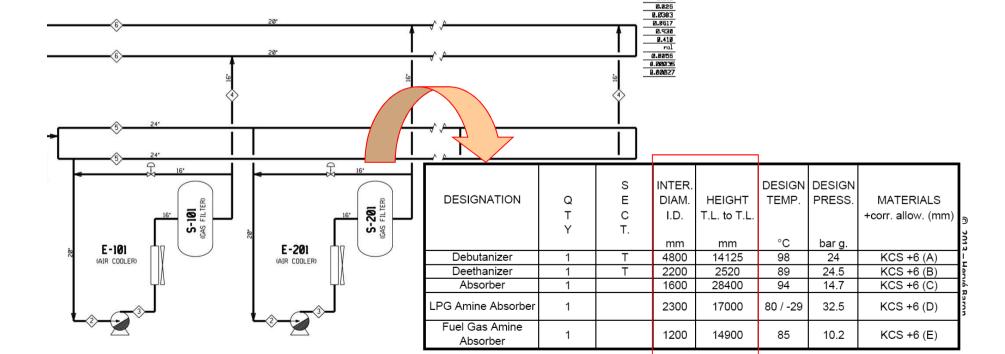
- Establish the bill of quantities (**BOQ**) in each trade: equipment, civil, piping, structural steel etc.
- BOQ = Material Take-Off (what is measured from available drawings at this stage) + allowances for design development + allowances for what is not yet on drawings + contingencies
- Apply ratios to get supply + installation cost
- Installation cost = qty * manhours/ton ratio * labour cost
- Labour cost is all in, i.e., includes construction equipment (crane, scaffolding)
- The ratio is based on standard manhours, i.e., home country,
- Localization factor (productivity) to be applied, i.e., actual installation manhours = ratio * productivity
- Example: piping installation cost, ratio: 250 std h / ton
 - Western Europe, labour cost \$100/hr yields \$20k/ton
 - Middle East, labour cost \$18/hr, productivity 2.5 yeilds \$16k/ton

Analytical

- Main equipment supply + install
- Piping supply + install
- Electrical supply + install
- Instrumentation & Control system supply + install
- Civil Works
- Steel structures
- Painting, Insulation
- Temporary construction facilities
- Engineering & Project Management
- Miscellaneous

- Main equipment supply + install
 - Supply

- Main equipment supply + install
 - Supply: eqt list (dimensions) => weight



Process design

PFDs

H&M balance

STREAM NUMBER	1	2	3	4	6	6	7	8
PRESSURE (MPa-aba)	8.78	6.52	25.1	25.06	8.52	25.06	24.95	24.95
TEMPERATURE (°C)	27.25	26.4	130	50.9	26.4	50.9	49.6	49.B
TOTAL FLOWRATE (Kg/h)	1388816	345204	345204	3452Ø4	690406	6984Ø8	1388816	698486
PHASE	gae	gae	gae	gae	gae	gza	gee	gza
FLOWRATE (SMFN) CNOTE 43	2007000	501750	501750	501750	1003500	1883588	2007000	1883588
ACTUAL FLOWRATE (m)/N	Z8457	5262	2016	2816	19525	4893	8210	4105
VELDCITY (m/pl	5.4	9.4	7.9	5.7	12.7	7.3	19.2	51
VISCOSITY (LP)	8.2136	Ø.Ø134	9.9201	0.0218	8.0134	0.0218	2.0216	0.0218
DENSITY (Kg/m²)	87.5	65.6	122.6	168.7	65.B	168.7	180.2	168.2
HOLECLLAR WEIGHT	16.52	16.52	16.52	16.52	16.52	16.52	16.52	16.52
COMPOSITION (% mol.)								
HETHANE (C))	97.49378	97.49378	97.49378	97.49378	97.49378	97.49378	97.49378	97.49378

- Main equipment supply + install
 - Supply: eqt list (dimensions) => weight
 - Rate?

- Main equipment supply + install
 - Supply: eqt list (dimensions) => weight
 - Rate:

USD 4/kg for CS – depends on eqt size: 4 (large) – 10 (small)

USD12/kg for SS

USD 300-500 /m2 for Shell&Tube / Air-coolers

USD 1000/kW for pumps

- Main equipment supply + install
 - Supply: eqt list, dimensions/capacity/weight
 - Installation

- Main equipment supply + install
 - Supply: eqt list, dimensions/capacity/weight
 - Installation ratios: % supply cost, typ. 8%

- Main equipment supply + install
 - Supply: eqt list, dimensions/capacity/weight
 - Installation ratios: % supply cost, typ. 8%

30 std manhours/ton (includes labour and equipment)

Analytical

- Main equipment supply + install
- Piping supply + install
- Electrical supply + install
- Instrumentation & Control system supply + install
- Civil Works
- Steel structures
- Painting, Insulation
- Temporary construction facilities
- Engineering & Project Management
- Miscellaneous

Piping supply + install

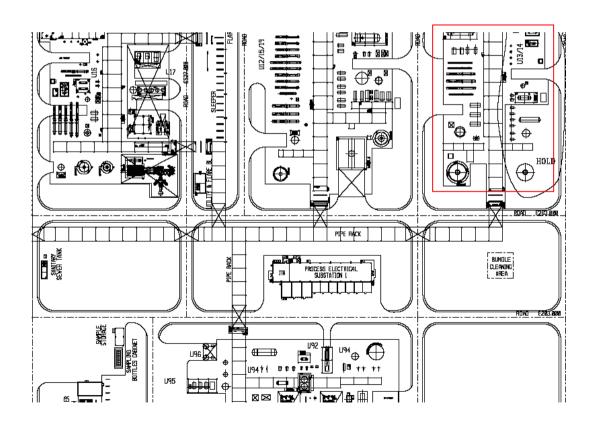
• Qty: ratio (eqt weight), typ. 40%

Piping supply + install

• Qty: ratio f (eqt number)

Piping supply + install

• Qty: ratio f (eqt number)


Item	qty
Equipment	10
Isometric / eqt	6
average length (m) / iso	10
average line diameter (inch)	12
material of construction	CS
total length (m)	600

Piping supply + install

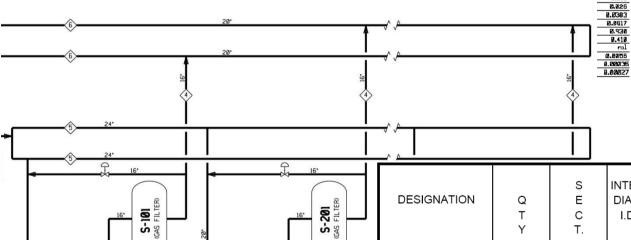
• Qty: ratio f (eqt number)

Remark: Unit vs Interconnection

Item	qty
Equipment	10
Isometric / eqt	6
average length (m) / iso	10
average line diameter (inch)	12
material of construction	CS
total length (m)	600

• Qty: ratio (eqt number, eqt weight)

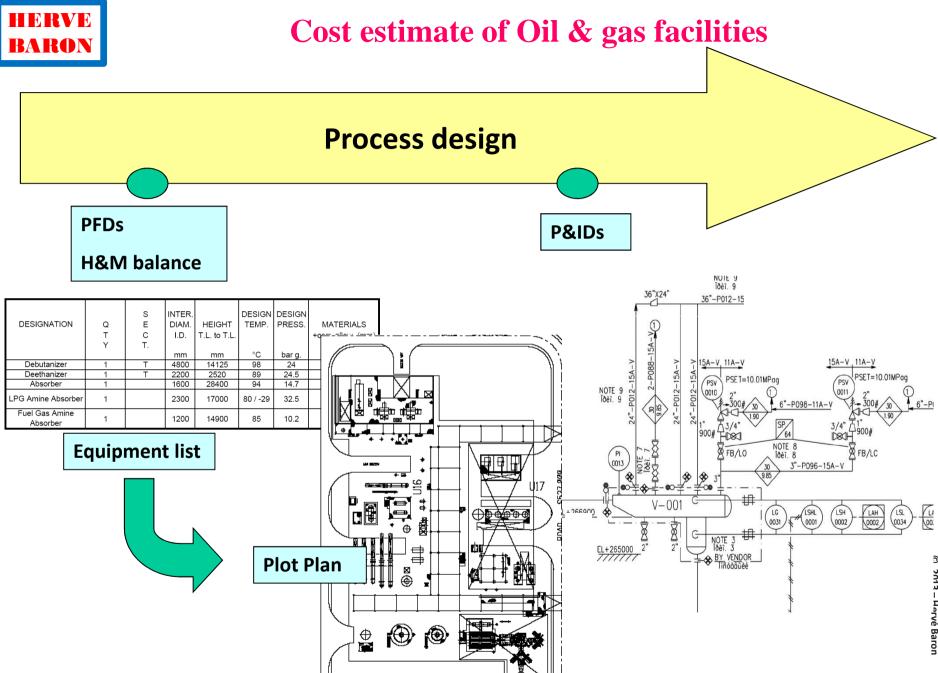
MTO

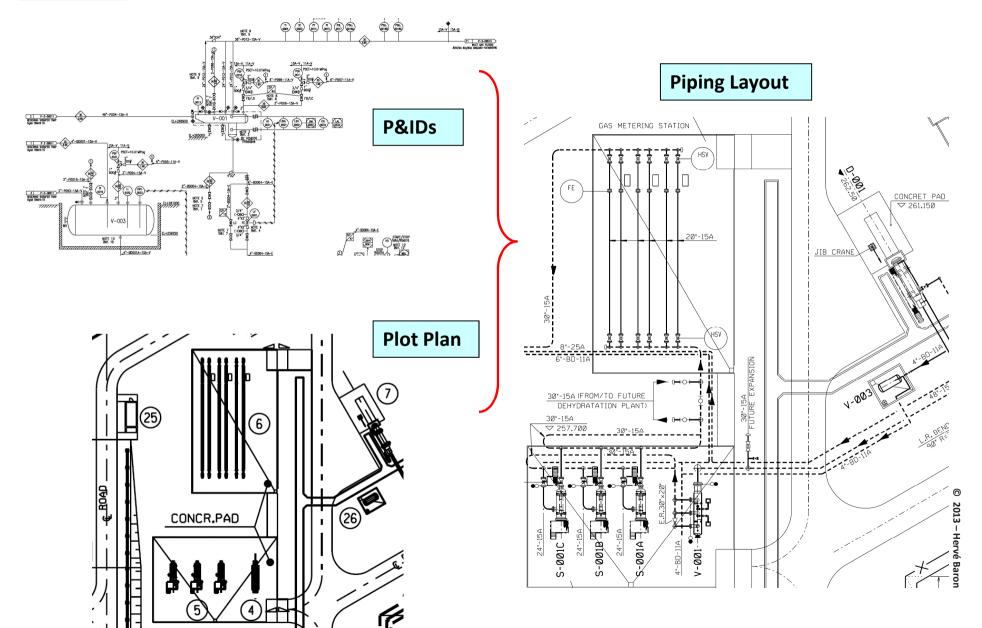

Process design

PFDs

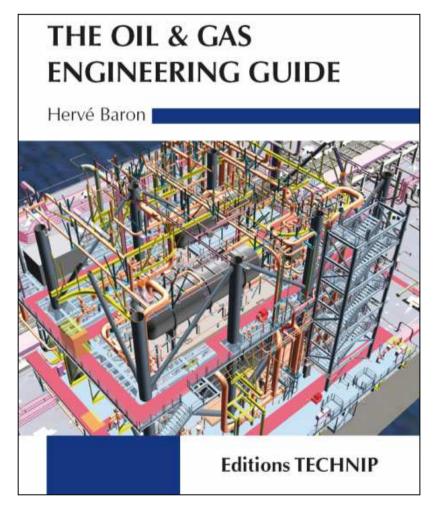
E-101 (AIR COOLER)

H&M balance


STREAM NUMBER	1	2	3	4	6	6	7	9
PRESSURE (MPa-abal	8.78	6.52	25.1	25.06	8.52	25.06	24.95	24.95
TEMPERATURE I'C)	27.25	26.4	130	50.9	26.4	50.9	49.6	49.8
TOTAL FLOWRATE (Kg/h)	1388816	345204	345204	3452Ø4	690406	6984Ø8	1388816	698488
PHASE	gae	gae	gae	gae	gae	gza	gee	gaa
FLOWRATE (SMFH) (NOTE 4)	2007000	521752	501750	501758	1003500	1883588	2007000	1883588
ACTUAL FLOWRATE (m/N)	Z8457	5262	2016	2816	19525	4893	8210	4105
VELDCITY (m/pl	5.4	9.4	7.9	5.7	12.7	7.3	19.2	51
VISCOSITY (LP)	8.2136	Ø.Ø134	9.9201	Ø.Ø219	8.0134	Ø.Ø218	2.0216	Ø.Ø218
DENSITY (Kg/m²)	87.5	65.6	122.6	168.7	65.B	168.7	180.2	168.2
HOLECLLAR VEIGHT	16.52	16.52	16.52	16.52	16.52	16.52	16.52	16.52
COMPOSITION (X mel.)								
HETHANE (C3)	97.49378	97.49378	97.49378	97.49378	97.49378	97.4937B	97.49378	97.49378
ET. 141 ET. 4001	4 0 0 0 7	0.000	4 200		4 000	7.000	0.000	


E-201
(AIR COOLER)

DESIGNATION	Q T Y	S E C T.	INTER. DIAM. I.D.	HEIGHT T.L. to T.L.	DESIGN TEMP.	DESIGN PRESS.	MATERIALS +corr. allow. (mm)
			mm	mm	°C	bar g.	
Debutanizer	1	Т	4800	14125	98	24	KCS +6 (A)
Deethanizer	1	Т	2200	2520	89	24.5	KCS +6 (B)
Absorber	1		1600	28400	94	14.7	KCS +6 (C)
LPG Amine Absorber	1		2300	17000	80 / -29	32.5	KCS +6 (D)
Fuel Gas Amine Absorber	1		1200	14900	85	10.2	KCS +6 (E)



For more information on Engineering, look up in:

A unique synthesis for the busy Project professional 200 pages, 250 illustrations

Piping supply + install

• Qty: MTO

Piping supply + install

• Qty: MTO

» Item count: P&IDs

» Lengths: Piping Layout

Piping supply + install

- Qty: MTO
 - » Item count: P&IDs
 - » Lengths: Piping Layout
 - ➤ Both Process & Utility lines
 - ➤ Both Above Ground & Underground lines, Fire water

Piping supply + install

- Qty: MTO
 - » Item count: P&IDs
 - » Lengths: Piping Layout
 - ➤ Both Process & Utility lines
 - ➤ Both Above Ground & Underground lines, Fire water

Allowances added for:

Piping supply + install

- Qty: MTO
 - » Item count: P&IDs
 - » Lengths: Piping Layout
 - ➤ Both Process & Utility lines
 - ➤ Both Above Ground & Underground lines

Allowances added for:

 what is not taken-off, e.g., small diameter and design development (P&ID completion) to obtain *quantities* to erect

Piping supply + install

• Qty: MTO

» Item count: P&IDs

» Lengths: Piping Layout

➤ Both Process & Utility lines

➤ Both Above Ground & Underground lines

Allowances added for:

• what is not taken-off, e.g., small diameter and design development (P&ID completion) to obtain *quantities*

to erect

Discipline	Category	%
Piping	All piping except valves	10
	Manual valves	5
	Motorised valves	0

Piping supply + install

• Qty: MTO

» Item count: P&IDs

» Lengths: Piping Layout

➤ Both Process & Utility lines

➤ Both Above Ground & Underground lines

Allowances added for:

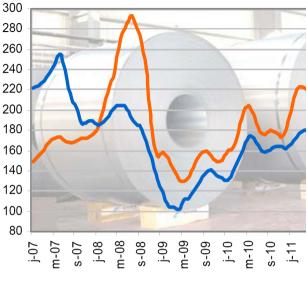
• what is not taken-off, e.g., small diameter and design development (P&ID completion) to obtain *quantities*

to erect

Discipline	Category	%
Piping	All piping except valves	10
	Manual valves	5
	Motorised valves	0

cut and losses to obtain quantities to be supplied

Cost estimate of Oil & ga


Piping supply + install

• Qty: ratio (eqt number, eqt weight)

MTO

• Rate Supply

Piping supply + install

• Qty: ratio (eqt number, eqt weight)

——Carbon St ——Forecast **MTO**

• Rate

Supply

\$ /kg, typ. USD 3 /kg for CS

Piping supply + install

• Qty: ratio (eqt number, eqt weight)

MTO

• Rate Supply \$ /kg, typ. USD 3 /kg for CS

Install

Piping supply + install

• Qty: ratio (eqt number, eqt weight)

MTO

• Rate Supply

Install

\$ /kg, typ. USD 3 /kg for CS std mhrs/ton, typ. 200-250 in unit, 100 on interconnecting pipe-racks, applied to the total piping weight, including fittings & valves.

Electrical supply + install

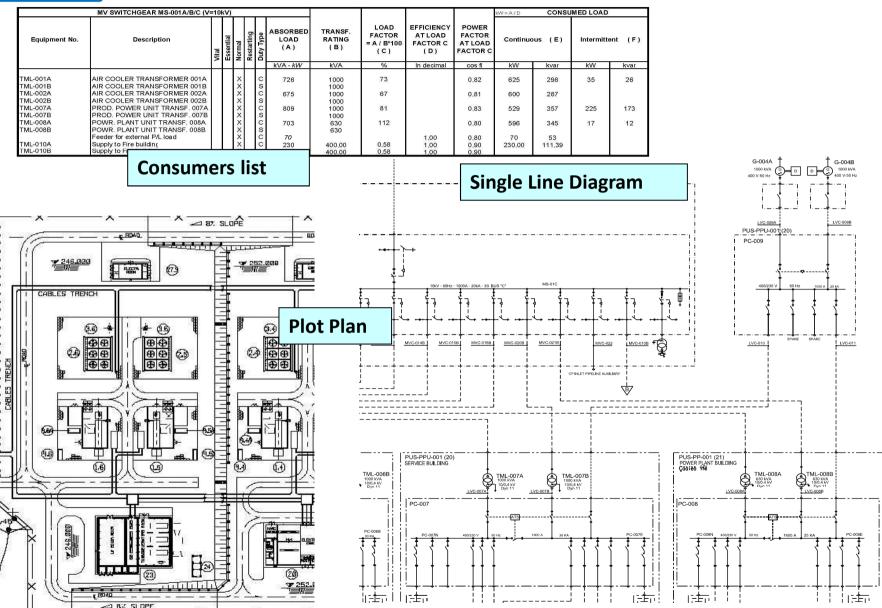
• Price ratio

% Main equipment, typ. 15-20%

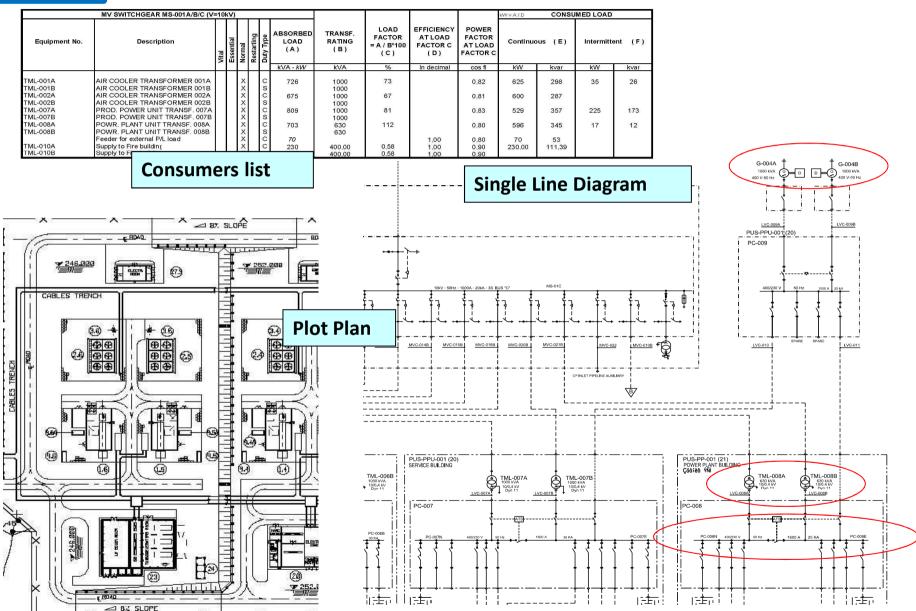
Electrical supply + install

• Price ratio

% Main equipment, typ. 15-20%


• Quantities:

Consumers list


• Rate (supply+install): generation)

USD 50k / consumer (w/o USD 520 / installed kW

Instrumentation & Control system supply + install

• Price ratio

% Main equipment, range: 40-120%

- Price ratio % Main equipment, range: 40-120%
- Qties

- Price ratio % Main equipment, range: 40-120%
- Qties nb equiv. loops (CV, 0.5 ON/OFF, Analyser)

- Price ratio % Main equipment, range: 40-120%
- Qties nb equiv. loops (CV, 0.5 ON/OFF, Analyser)
- Rate

Instrumentation & Control system supply + install

• Price ratio

% Main equipment, range: 40-120%

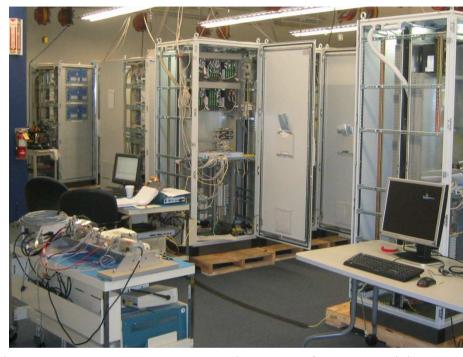
• Qties

nb equiv. loops (CV, 0.5 ON/OFF, Analyser)

• Rate

supply: \$ /equivalent control loops, typ. 90k

install: hrs / equivalent control loops, typ. 750



- Price ratio % Main equipment, range: 40-120%
- Qties Instrument list

Instrumentation & Control system supply + install

• Price ratio % Main equipment, range: 40-120%

• Qties Instrument list

• Rate Supply+install: \$ / I/O, typ. 1000

Civil Works

• Price Ratio

% Main equipment cost, typ. 15-20%

Civil Works

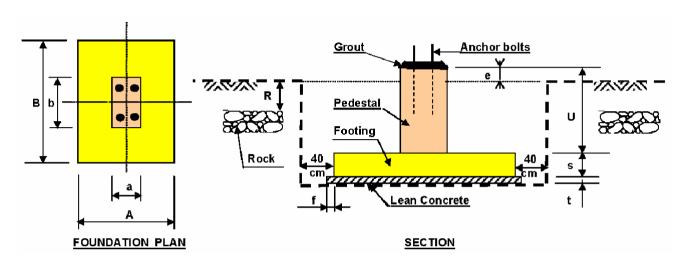
- Price Ratio % Main equipment cost, typ. 15-20%
- Qty

Civil Works

- Price Ratio % Main equipment cost, typ. 15-20%
- Qty Dimensions/Weight of equipment & structure => size of foundations (m3)

Civil Works

- Price Ratio % Main equipment cost, typ. 15-20%
- Qty Dimensions/Weight of equipment & structure => size of foundations (m3)
- Rate


Civil Works

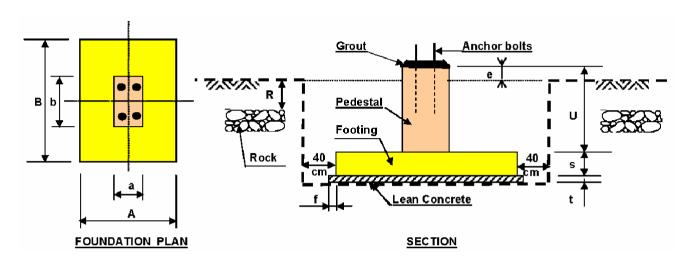
• Price Ratio % Main equipment cost, typ. 15-20%

• Qty Dimensions/Weight of equipment & structure => size of foundations (m3)

• Rate all-in (materials & labour) rate \$/m3, typ. 1000

Civil Works

• Price Ratio


Qty

% Main equipment cost, typ. 15-20%

MTO: excavation, formwork, rebar, etc.

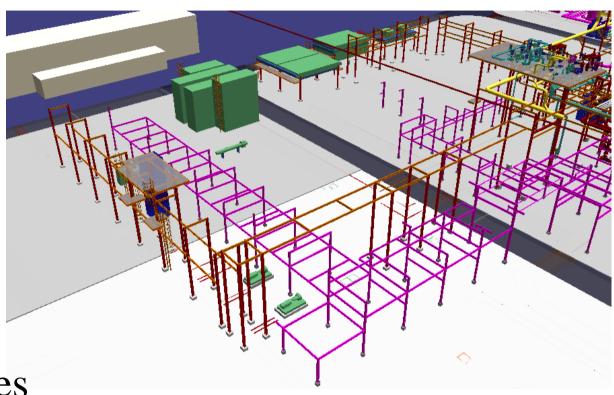
Steel Pipe Racks Foundations	TOTAL CONCRETE	Section excavations by machine in earth		Steel Reinforcement		Anchor Non-shrink Bolts Grout	Concrete	Foundation concrete	Surface treatment of	
	VOLUME	Down to 2 m depth From E	From Excavation	Rebars for	Rebars for	4 φ 33 / unit 25 n	25 mm thick	"1"	55.115.1515	foundation
	by dimens.		Trom Executation	footings	pedestals					
	(m ³)	(m ³)	(m ³)	(kg)	(kg)	(kg)	(m²)	(m²)	(m^3)	(m²)
105-PR-03	130	445	296	9 504	1 078	818	11	225	130	445

Civil Works

• Price Ratio

• Qty

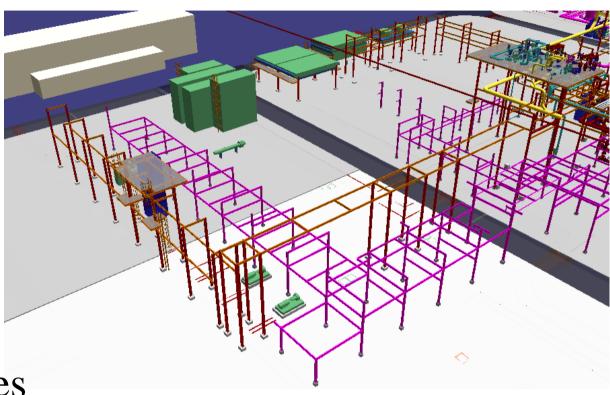
• Rate


% Main equipment cost, typ. 15-20%

MTO: excavation, formwork, rebar, etc.

Mhrs/operation + labour cost

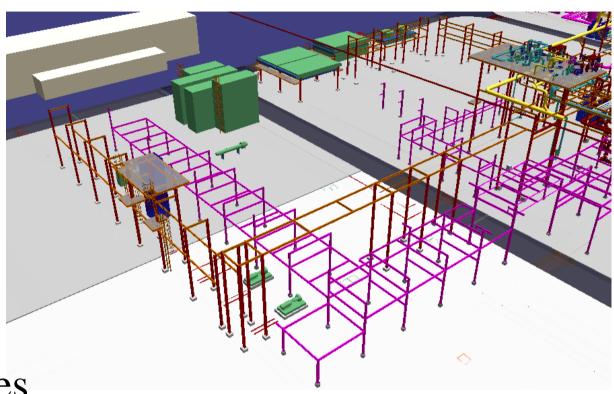
Steel Pipe Racks Foundations	TOTAL CONCRETE	Section excavations by machine in earth		Steel Reinforcement		Bolts Grou	Non-shrink Grout	Concrete	Foundation concrete	Surface treatment of foundation
	VOLUME	Down to 2 m	From Excavation	Rebars for Rebars for footings pedestals	25 mm thick					
	by dimens.	depth								
	(m ³)	(m ³)	(m ³)	(kg)	(kg)	(kg)	(m²)	(m²)	(m ³)	(m²)
105-PR-03	130	445	296	9 504	1 078	818	11	225	130	445



Steel structures

• Price Ratio

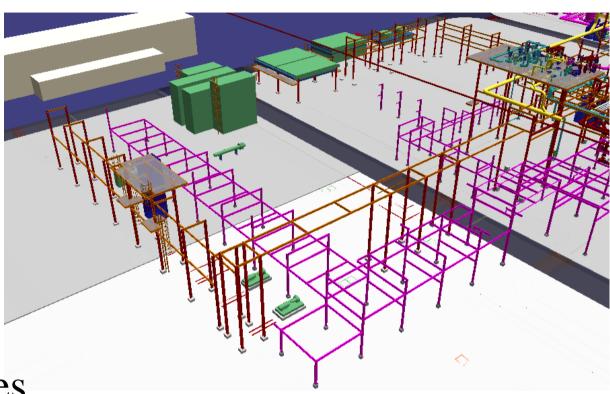
% Main equipment cost, typ. 10-30%



Steel structures

- Price Ratio
- Qty Ratio

% Main equipment cost, typ. 10-30%


Steel structures

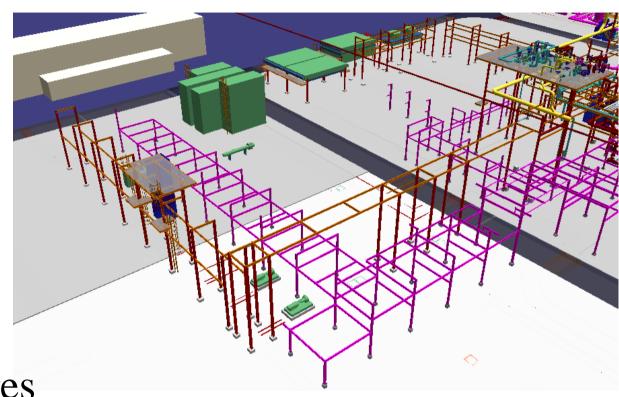
• Price Ratio

• Qty Ratio

% Main equipment cost, typ. 10-30% pipe-racks: 90% of piping weight platforms: 10% of equipment weight

Steel structures

• Price Ratio


• Qty Ratio

% Main equipment cost, typ. 10-30% pipe-racks: 90% of piping weight platforms: 10% of equipment weight

• Rate

Cost Estimation of & gas facilities

Steel structures

• Price Ratio

• Qty Ratio

• Rate

% Main equipment cost, typ. 10-30%

pipe-racks: 90% of piping weight

platforms: 10% of equipment weight

Supply USD 2/kg

Erection 20 std manhours/t

Analytical

- Main equipment supply + install
- Piping supply + install
- Electrical supply + install
- Instrumentation & Control system supply + install
- Civil Works
- Steel structures
- Painting, Insulation

• Painting, Insulation

• Price ratio

% eqt, piping, str cost, typ. 5% each

• Painting, Insulation

• Price ratio

% eqt, piping, str cost, typ. 5% each

• Qty

MTO

• Painting, Insulation

• Price ratio

% eqt, piping, str cost, typ. 5% each

• Qty

MTO

• Rate

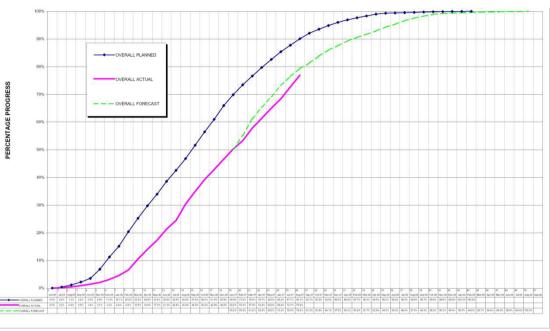
supply + install h / m2

typ. 0,5 for painting 1,5 for (hot) insul.

Analytical

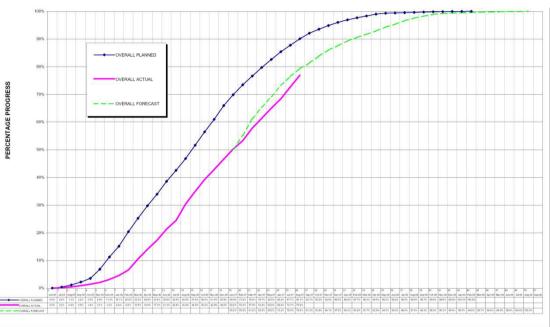
- Main equipment supply + install
- Piping supply + install
- Electrical supply + install
- Instrumentation & Control system supply + install
- Civil Works
- Steel structures
- Painting, Insulation
- Temporary construction facilities
- Engineering & Project Management
- Miscellaneous

- Temporary Construction facilities
 - Ratio % total cost, typ. 5% for new site
 - Detailed

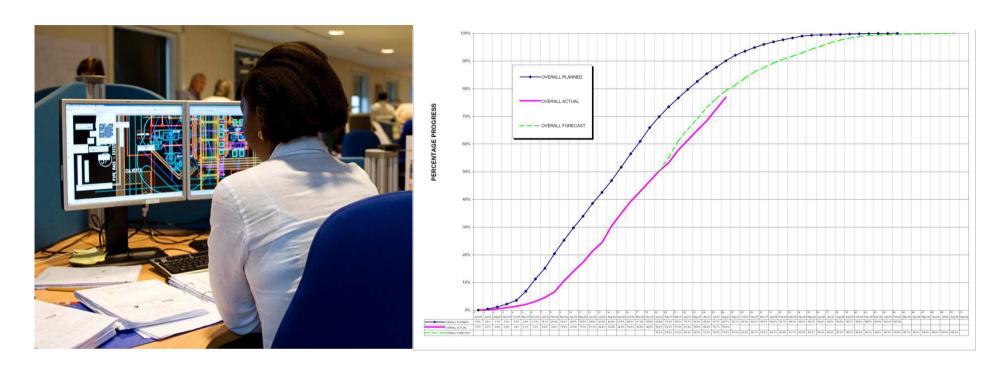


Analytical

- Main equipment supply + install
- Piping supply + install
- Electrical supply + install
- Instrumentation & Control system supply + install
- Civil Works
- Steel structures
- Painting, Insulation
- Temporary construction facilities
- Engineering & Project Management
- Miscellaneous



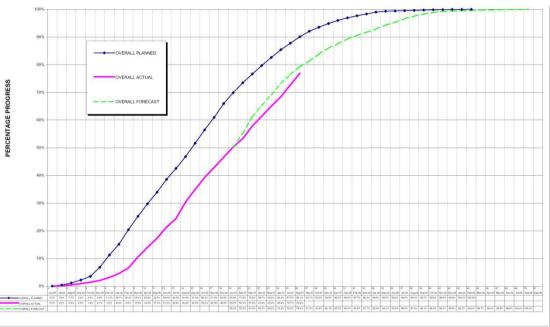
- Engineering & Project Management = all Project services
 - Price ratio % total cost, typ. 15%



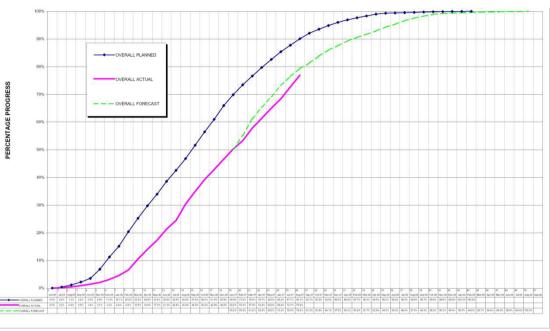
- Engineering & Project Management = all Project services
 - Price ratio

% total cost, typ. 15%

Qty ratio



- Engineering & Project Management = all Project services
 - Price ratio % total cost, typ. 15%
 - Qty ratio hrs / eqt item, typ. 1800 for Refining, 2500 for gas, 4000 for LNG


- Engineering & Project Management = all Project services
 - Price ratio

% total cost, typ. 15%

Qty

- Engineering & Project Management = all Project services
 - Price ratio
 - Qty

% total cost, typ. 15%

home office: tasks list + std manhours

field supervision: ratio to labour, typ. 1/7

Analytical

- Main equipment supply + install
- Piping supply + install
- Electrical supply + install
- Instrumentation & Control system supply + install
- Civil Works
- Steel structures
- Painting, Insulation
- Temporary construction facilities
- Engineering & Project Management
- Miscellaneous
- Contractor's cost

Miscellaneous

- Earthworks: always specific
- Special foundations
- Infrastructures: roads, buildings
- Spare parts, typ. 5% main equipment cost
- First fill (catalyst, lubes, chemicals)

Analytical

- Main equipment supply + install
- Piping supply + install
- Electrical supply + install
- Instrumentation & Control system supply + install
- Civil Works
- Steel structures
- Painting, Insulation
- Temporary construction facilities
- Engineering & Project Management
- Miscellaneous
- Contractor's cost

- Contractor's cost
 - profit,
 - risks,
 - sales cost,

- Contractor's cost
 - profit, typ. 7%
 - risks,
 - sales cost,

typ. 10-15%

- Main equipment supply + install
- Piping supply + install
- Electrical supply + install
- Instrumentation & Control system supply + install
- Civil Works
- Steel structures
- Painting, Insulation
- Temporary construction facilities
- Engineering & Project Management
- Miscellaneous: catalysts etc.
- Contractor's cost

Typical breakdown of overall facility cost					
Project Services	15				
Equipment & materials supply	40				
Construction	30				
Contractor'sn profit, risks, sales cost etc.	15				
TOTAL	100				

Main features:

- Different level of Cost estimate accuracy
 - Feasibility study +/-30% accuracy
 - Final Investment Decision (FID) +/- 10%

Which of the methods we have seen would you use for each case?

Main concepts:

- Different level of Cost estimate accuracy
- Factored / Detailed
- Qty estimate: allowances for design development
- Rates:
 - In-house historical data similar Plant
 - Cost estimate: Contingencies for cost escalation
 - Inquiries + provisions for cost adders (supplies),
 additional works/re-works (construction)
- Direct costs / Indirect costs

Historical evolution:

- + Increased instrumentation & control costs
- Engineering low cost centers
- Low cost sourcing 20% cheaper
- Increase in productivity (3D model)
- + Additional requirements: safety, environment

You enjoyed this presentation? Share my experience on other topics:

- > Engineering
- > Contract Management
- Project Control

Attend my classroom training

List and schedule of coming sessions at:

http://www.toblog.fr/en/baron.html

